

GCE

Mathematics (MEI)

Advanced GCE

Unit 4767: Statistics 2

Mark Scheme for June 2011

1 (i)	9 8 7 6 5 4 3 2 1 0 0 20 40 60 80 100 120 140	G1 for axes G1 For values of <i>x</i> G1 for values of <i>y</i>	3	Condone axes drawn either way. Axes should show some indication of scale. If not then Max G1 if points 'visibly correct'. If axes are scaled and only one point is incorrectly plotted, allow max G2/3.
1 (ii)	$\overline{x} = 60, \ \overline{y} = 4.26$ $b = \frac{S_{xy}}{S_{xx}} = \frac{1803 - 300 \times 21.3/5}{27000 - 300^2/5} = \frac{525}{9000} = 0.0583$ OR $b = \frac{1803/5 - 60 \times 4.26}{27000/5 - 60^2} = \frac{105}{1800} = 0.0583$ hence least squares regression line is: $y - \overline{y} = b(x - \overline{x})$ $\Rightarrow y - 4.26 = 0.0583 (x - 60)$ $\Rightarrow y = 0.0583x + 0.76$	B1 for \bar{x} and \bar{y} used appropriately (SOI) M1 for attempt at gradient (b) A1 for 0.0583 cao M1 for equation of line A1 FT for complete equation	5	B1 for means can be implied by a correct value of b using either method. Allow $\overline{y} = 4.3$ Attempt should be correct – e.g. evidence of either of the two suggested methods should be seen. Allow 0.058 Condone 0.058 $\dot{3}$ and $\frac{7}{120}$ Dependent on first M1. Values must be substituted to earn M1. Condone use of their b for FT provided b >0. Final equation must be simplified. $b = 0.058$ leads to $y = 0.058x + 0.78$
1 (iii)	Regression line plotted on graph The fit is good	G1 G1 E1 for good fit	3	Line must pass through their $(\overline{x} \cdot \overline{y})$ and <i>y</i> -intercept. E0 for notably inaccurate graphs/lines

4767	Mark Scheme	June 2011

1 (iv)	$x = 30 \Rightarrow$ predicted $y = 0.0583 \times 30 + 0.76 = 2.509$ Residual = $2.5 - 2.509 = -0.009$	B1 for prediction M1 for subtraction A1 FT	3	Using their equation Subtraction can be 'either way' but for the final mark the sign of the residual must be correct. FT sensible equations only $-$ e.g. no FT for $y = 0.071x$ leading to $+0.37$. [$c = 0.78$ leads to a residual of -0.02]
1 (v)	(A) For $x = 45$, $y = 0.0583 \times 45 + 0.76 = 3.4$ (B) For $x = 150$, $y = 0.0583 \times 150 + 0.76 = 9.5$	M1 for at least one prediction attempted A1 for both answers (FT their equation provided their <i>b</i> >0)	2	Prediction obtained from their equation.
1 (vi)	This is well below the predicted value suggesting that the model breaks down for larger values of x.	E1 for well below E1 extrapolation	2	Some indication that the value (8.7) is significantly below what is expected (9.5) is required for the first E1. Simply pointing out that it is 'below' is not sufficient. The second E1 is available for a suitable comment relating to the model being suitable only for values within the domain of the given points. Allow other sensible comments for either E1. E.g. The data might be better modelled by a curve', 'there may be other factors affecting yield',
			18	

4767	Mark Scheme	June 2011

2 (i)	Independently means that the arrival time of each	E1		NOTE Each answer must be 'in context'
	car is unrelated to the arrival time of any other car.			and 'clear'
	Randomly means that the arrival times of cars are	E1		Allow sensible alternative wording.
	not predictable.			
	At a uniform average rate means that the average	E1		SC1 For ALL answers not in context but
	rate of car arrivals does not vary over time.		_	otherwise correct.
	·		3	
2 (ii)	$_{-0.62} 0.62^{0}$ $_{-0.62} 0.62^{1}$	M1 for either		
	P(At most 1 car) = $e^{-0.62} \frac{0.62^0}{0!} + e^{-0.62} \frac{0.62^1}{1!}$			$1.62e^{-0.62}$
		M1 for sum of both		Allow 0.8715 not 0.872 or 0.8714
	= 0.5379 + 0.3335 = 0.871	A1 CAO	3	Allow 0.87 without wrong working seen
2 (***)	N 1 10 0 62 62	D1 famous (COI)	3	The state with the state of the
2 (iii)	New $\lambda = 10 \times 0.62 = 6.2$	B1 for mean (SOI)		II (1 D/V < 5) '.1)
	D(1 5: 10 :) 1 0 4141 0 5050	M1 for probability		Use of $1 - P(X \le 5)$ with any λ
	P(more than 5 in 10 mins) = $1 - 0.4141 = 0.5859$	A1 CAO		Allow 0.586
			3	
2 (iv)	Poisson with mean 37.2	B1 for Poisson		
		B1 for mean 37.2		Dependent on first B1
			2	Condone P(37.2, 37.2)
2 (v)	Use Normal approx with	B1 for Normal (SOI)		
	$u = \sigma^2 = \lambda = 37.2$	B1 for parameters		
	(39.5–37.2)	1		
	$P(X \ge 40) = P\left(Z > \frac{39.5 - 37.2}{\sqrt{37.2}}\right)$	B1 for 39.5		
	$= P(Z > 0.377) = 1 - \Phi(0.377) = 1 - 0.6469$	M1 for correct use of		
		Normal approximation using		
		correct tail		
	= 0.3531	A1 cao		Allow 0.353
		111 Cau	5	7 HIOW 0.333
			16	
1			_	

4767	Mark Scheme	June 2011
4/0/	Wark Scrienie	Julie 2011

3 (i)	P(Apple weighs at least 220g)			
	$= P\left(Z > \frac{220 - 210.5}{15.2}\right)$	M1 for standardising		Condone numerator reversed but penalise continuity corrections
	$= P(Z > 0.625)$ $= 1 - \Phi(0.625) = 1 - 0.7340$ $= 0.2660$	M1 for correct structure A1 CAO inc use of diff tables		i.e. $1 - \Phi(\text{positive } z \text{ value})$ Allow 0.266 but not 0.27
			3	
3 (ii)	P(All 3 weigh at least $220g$) = $0.2660^3 = 0.0188$	M1 A1 FT	2	M1 for their answer to part (i) cubed Allow 0.019 and 0.01882
3 (iii)	(A) Binomial (100, 0.0188)	B1 for binomial B1 for parameters	2	Second B1 dependent on first B1 FT their answer to part (ii) for second B1
	(B) Use a Poisson distribution with $\lambda = 100 \times 0.0188 = 1.88$	B1 for Poisson SOI B1 for Poisson mean		Consistent with $p < 0.1$ from part (iii) (A) FT answer to part (ii) with $p < 0.1$
	P(At most one) = $e^{-1.88} \frac{1.88^0}{0!} + e^{-1.88} \frac{1.88^1}{1!}$	M1 for either probability M1 for sum of both A1 CAO For 0.44 or better		Dependent on both previous B1 marks Allow 0.4395 but not 0.4337
	= 0.1525 + 0.2869 = 0.4394 (C) <i>n</i> is large and <i>p</i> is small	B1	5	Dependent on use of Poisson in part (iii) <i>B</i> Allow <i>n</i> is large and $np < 10 \& n$ is large and $np \approx npq$
3(iv)(A)	$\Phi^{-1}(0.1) = -1.282$	B1 for ±1.282		Do not allow 1 – 1.282
	$\frac{170 - 185}{\sigma} = -1.282$ $1.282 \ \sigma = 15$	M1 for correct equation as written o.e.		Allow M1 if different z-value used
	$\sigma = 11.70$	A1 CAO	3	Without incorrect working seen. Allow 11.7

3(iv)(B)	cox's Braeburns	G1 for shape G1 for means, shown explicitly or by scale G1 for lower max height for Braeburns G1 for greater width (variance) for Braeburns	4	Ignore labelling of vertical axis. Two intersecting, adjacent Normal curves Means at 185 and 210.5
		TOTAL	20	
4 (a)(i)	H ₀ : no association between amount spent and sex H ₁ : some association between amount spent and sex	B1 for both	1	Hypotheses must be the right way round, in context and must not mention 'correlation'.
4(a)(ii)	Expected frequency = $62 \times 102 \div 200 = 31.62$	B1		Do not allow 31.6
	Contribution = $(34 - 31.62)^2 / 31.62$ = 0.1791	M1 A1 for valid attempt at (O-E) ² /E NB Answer given	3	

4(a)(iii)	Refer to X_4^2	B1 for 4 deg of freedom		
	Critical value at 5% level = 9.488	B1 CAO for cv		Allow $p = 0.524$
	3.205 < 9.488	M1		0.524 > 0.05
	Result is not significant	A1 for not significant		Conclusion must be stated to earn A1 here.
	There is insufficient evidence to suggest any association between amount spent and sex.	E1	5	Allow 'do not reject H ₀ ' and condone 'accept H ₀ ' or 'reject H ₁ '. FT if cv consistent with their d.o.f. Dependent on previous A1 and final comment must be in context and not mention correlation. SC1 for correct final conclusion where previous A1 omitted but M1 awarded.
4 (b)	H_0 : $\mu = 400$; H_1 : $\mu < 400$	B1 for H ₀		Hypotheses in words must refer to population
	Where μ denotes the population mean (weight of	B1 for H ₁		mean.
	the loaves).	B1 for definition of μ		
		·		
	$\bar{x} = 396.5$	B1 for sample mean		
	Test statistic = $\frac{396.5 - 400}{5.7 / \sqrt{6}} = \frac{-3.5}{2.327} = -1.504$	M1 must include √6 A1FT their sample mean		Condone numerator reversed for M1 but award A1 only if test statistic of 1.504 is
	5% level 1 tailed critical value of $z = -1.645$	B1 for ±1.645		compared with a positive <i>z</i> -value.
	-1.504 > -1.645 so not significant.	M1 for sensible comparison leading to a conclusion		Dependent on previous M1
	There is insufficient evidence to reject H ₀			
	There is insufficient evidence to suggest that the true mean weight of the loaves is lower than the minimum specified value of 400 grams.	A1 for conclusion in context	9	FT their sample mean only if hypotheses are correct.
		TOTAL	18	

Additional notes re Q1 parts (ii), (iv) and (v)

Part (ii) 'x on y' max B1

Part (iv) x = 16.9y - 12.02 leads to a prediction of x = 30.23 and a residual of -0.23 B1 M1 A1 available.

Part (v) 'x on y' not appropriate here so award 0 if 'x on y' used.

Additional notes re Q2 parts (i) & (v)

Part (i)

Independent – Allow 'not linked to' or 'no association' or 'unrelated' 'not affected by', 'not connected to', 'not influenced by' DO NOT ACCEPT 'not together' or 'not dependent'

Random - Allow 'not predictable' or 'no pattern' or 'could happen at any time' or 'not specific time'

Uniform average rate – Allow 'average (rate) is constant over time' DO NOT ACCEPT 'average constant' or 'average rate and uniform' – be generous over defining 'average' and/or 'rate'.

Part (v) If Binomial distribution stated in part (iv), allow B1 B0 B1 M0 A0 max

Additional notes re Q3 part (iii) where p > 0.1

- (iii) B as scheme unless a Normal approximation is more suitable (p > 0.1). If so, award B1 B1 for Normal and correct parameters. The remaining marks are dependent on both these B1 marks being awarded. M1 for the correct continuity correction (P(X < 1.5)) and depM1 for the correct tail but award A0.
- (iii) C 'n is large and p is not too small' or 'np > 10'

Additional notes re Q4(b)

<u>σ estimated</u>

sample mean, 7.079... used in place of 5.7, the given value of the population mean, leads to a test statistic of -1.212... This gets M1A0 & the remaining marks are still available.

Critical Value Method

 $400 - 1.645 \times 5.7 \div \sqrt{6}...$ gets M1B1 ...= 396.17...gets A1

 $400 + 1.645 \times 5.7 \div \sqrt{6}$ gets M1B1A0.

396.5 > 396.2 gets M1for sensible comparison (and B1 for 396.5)

A1 still available for correct conclusion in words & context

90% Confidence Interval Method

CI centred on 396.5 (gets B1 for 396.5)

 $+ \text{ or } -1.645 \times 5.7 \div \sqrt{6} \text{ gets M1 B1}$

= (392.67, 400.33) A1

contains 400 gets M1

A1 still available for correct conclusion in words & context

Probability Method

Finding P(sample mean < 396.5) = 0.0663 gets M1 A1 (and B1 for 396.5)

0.0663 > 0.05 gets M1 for a sensible comparison if a conclusion is made and also gets the B1 for 0.0663 (to replace the B1 for cv = 1.645).

A1 still available for correct conclusion in words & context.

Condone P(sample mean >396.5) = 0.9337 for M1 and B1 for 0.9337 but only allow A1 if later compared with 0.95 at which point the final M1 and A1 are still available

Two-tailed test

Max B1 B0 B1 B1 M1 A1 B1 (for cv = -1.96) M1 A0